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ABSTRACT

An approximate analytical theory for open microstrip recently developed by the authors was compared with
existing theoretical results; however detailed examination pointed up discrepancies among these results for strips
of width comparable to or greater than substrate thickness. Since these disagreements appear to arise from approx-
imations made on the charge and current distributions on the strip, the authors undertook an investigation of
these distributions for wide microstrip which are reported here. Significant differences are found in contrast to
the case of narrow strips, which can affect the accuracy of numerical procedures for finding the effective dielec-
tric constant. An analytical approach to excitation of microstrip by an idealized voltage generator is also
discussed.

Introduction

In a recent analytical study of narrow open micro-
strip (Fig. 1) a literature search was made to find
numerical results with which the new, approximate theory
could be compared.1 Somewhat surprisingly, comparison
of the half dozen or so existing theoretical results
showed discrepancies in effective dielectric constant
of up to 25% for str”ps whose width is comparable with
substrate thickness. 3 The main reason for these dis-
crepancies seems to be an inadequate knowledge of
current and charge distributions on the strip--many
moment-method techniques, for instance, use piecewise-
constant approximating functions and encounter diffi-
culties with spurious solutions for the effective
dielectric constant, Sr .
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Moreover, it turns out that the forms of the charge

and current distributions are different from each other
for wider strips (the charge distribution is slightly
“flatter” in that it decays more rapidly away from the
edges of the strip). A study was therefore undertaken
to find, if possible, simple but accurate forms for
these distributions on wider microstrips, and to use
these to find accurate Values for Cr

eff -
In the latter part of this paper we address the

problem of how to find the excitation of a microstrip
by an idealized voltage source. This problem requires
finding not only the excitation coefficient of the
transmission mode, but also the accompanying radiation
into both the space above the strip and the surface
wave along the substrate. A full modal description for
the current is developed, which should also be useful
in attacking microstrip discontinuity problems, such as
reflection and radiation at a junction or at an open-
ended microstrip.

Change and Current Distributions on the Strip

[e can start with the integral equations ffi :~~:9e
and current derived earlierl by the authors.
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whe~e o,(y) is the (normalized) charge distribution on
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T=kot is the substrate thickness normalized to free-
space wavenumber, while

un = (A2+ a2 -l.Irer)* ; U. =(A2+ 0,2-l)*; Re(uo) z O

and u and s are respectively the relative permea- (3)

bilit~ and p~rmittivity of the substrate. A propagation
factor of exp(iwt -iko~x) has been assumed, where

c?‘&reff “ Once the solution of (1) is known as a

function of a, the longitudinal current density Jx(y)
is found from
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Knowing both current and charge as functions of u, we
then enforce an edge condition on the transverse current
density on the strip to obtain a characteristic equation
for determ~ing u:

I
[ikoa JX(Y) + pl(y)]dy = O (7)
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Although alternative forms of these integral equa-
tions exist, these are most convenient for our purposes
since the unknown functions are the important physical
quantities of charge and longitudinal current, which
are closely related to concepts of capacitance and in-
ductance of the line, and in addition possess the same
type of singular behavior near the edges of the strip.

Under the assumptions that s >>1 and Ur = 1 (quite
typical for microstrip), and tha! no dimension is yet
comparable to a free-space wavelength, it is found that
the kernels (2) and (5) can be approximated accurately
by

Ge(Y) = --&~n[tanh~l 1 (8)
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Now (8) is simply the kernel for the integral equation
determining the charge cjistribution on a symmetric
(semi-closed) stripline~ (i. e., a stripline with an
additional ground plane located a distance t above the
strip - see Fig. 2(a)). The approximate equi-ce of

been observed previously~$~ Thus, we can say withr ‘as
symmetric and open stripl”n s for large values of=

confidence that the charge distribution can be repre-
sented accurately by a function of the form:

P.
P,(Y) = ; IYI s ~ (10)

cosh2(#)
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where P. is a constant,

The kernel (9), on the other hand, is the kernel
for the integral equation determing the current dis-
tribution on the parallel-plate line in free-space
shown in Fig. 2(b). While this distribution is known
exactly, it is a quite complicated expression involving
elliptic integrals and requires solution of an implicit
transcendental equation. The authors have obtained a
closed-form approximation for this distribution which
is quite accurate for any !/t ratio; it has the proper
limiting behavior as l/t+~ and as L/t + O, and at
worst (near L/t = 2) is in error by about 12%, and
then only in the region close to the edge of the strip
(Fig. 3). This approximation is similar to (11):

Jo
JX(Y) = (11)

cosh2(~) - cosh2(~)

By comparison with (10) it can be seen that the charge
distribution is different from that of the current;
it is “flatter,” i.e., decays more rapidly away from
the singularities at the edges of the strip.

The distributions (10) and (11) can be used, for
example, with the v riational expression given by

.8Pregla and Kowalskl to obtain a dispersion equation
for a . Their formulation requires the knowledge of
the Fourier transforms of (10) and (11) with respect
to y; fortunately these are known exactly7 as the

Legendre functions P-j+i2T(cosh ~) and P ,+i2T(cosh~).T
respectively, where T = AT/n, and Ais the transform
variable, similar to that used in (2), (5) and (6).
Efficient means for computing these functions numeri-
cally exist7-9 for all ranges of k and !/t.

The resulting dispersion relation is similar to
earlier for a narrow strip:lthat found

where L (a)
dispersive

2
c1 = L(u)C(U)

and C(a) consist of a static part and a
part,

(12)

L(a) = Ls + Ld(a) (13)

(14)

and Ld(a) and Cd(a) are given by Sommerfeld integrals

similar to (2), (5) and (6), involving the Legendre
functions referred to above as well. Agreement with
the results of Jansenlo is shown in Fig. 4, but since
only a single function is needed to represent each of
the charge and current distributions, computation time
is reduced over the moment method used by Jansen which
requires a large number of basis functions for wide
strips. Comparison with results for even wider strips
obtained by Wiener-Hopf methodsll is also quite good
in view of the fact that such methods do not have their
greatest accuracy at low frequencies.

Excitation by a Slot Voltage Generator

To consider excitation of the strip by a delta-
function slot voltage generator, we can write the
fields, charges and currents as Fourier transforms
in to recover the longit~~~na~ dependence, e.g.,

.

ex(x) =
[

Ex(a)e 0 da (15)

The boundary-sourc~ condition ex(x) = -V06(X) on the
strip leads, instead of (l), to the integral equation

where no = V$o/eo and A is a constant to be determined.

In special cases such as narrow strip,l or the dense
substrate (Sr>>l) considered above, good approximate

expressions for pi(y) are available. For the narrow

strip, for example, the remainder of the analysis pro-
ceeds as for the sourceless case,l and leads to the
following expression for the current density on the
striD:

/

V. me-iko~x
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where .

M(a) = & - C(a) (18)

A modal decomposition of this current follows if
we deform the integration contour in (17) upwards
(ifx < 0) or downwards (ifx > O) over the singu-
larities of M(a) in t e appropriate half of thea-
plane. fThese include a pair of branch cuts at
~=ii., corresponding to waves radiated into the space
above the strip; another pair of cuts at a =tap
(the propagation constant of the TM surface wave
supported by the substrate), corresponding to waves
radiated from the strip along the substrate as a
surface wave, and the pole located at the zero of
M(IY,) (the root of (12)). The branch cuts are illus-
trated in Fig. 5. Numerical evaluation of the branch
cut integrals will show the individual contributions
of surface wave and “space wave” to the radiation of
this structure, and it seems likely that microstrip
of finite length might be analyzed by suitable
adaptations of these results, in a manner similar to
that which is used in the study of finite cylindrical
antennas.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

References

D.C. Ctjang and E.F. Kuester, to appear in Arch.
Elek. Ubertragungstech.

E.F. Kuester and D.C. Chang, to appear in IEEE
Trans. MTT.

G. Kowalski and R. Pregla, Arch. Elek. fibergragungs-
~. V. 27, pp. 51-52 (1973).

J.M.C. Dukes, Proc. IEE London) part B, v. 103,
PP. 319-333 (1~

H. A. Wheeler, IEEE Trans. MTT v. 13, pp. 172-185
(1965).

R. Pregla and G. Kowalski, Arch. Elek. Ubertragungs-
tech, v. 28, pp. 339-340 (1974).

M.I. Zhurina and L.N. Karmazina, Tables and For-
mulae for the Spherical Functions

P:l+iT (Z). Oxford: Pergamon Press, 1966.
2

F.W.J. Olver, Asymptotic and Special Functions.
New York: Academic Press, 1974.

W. Bartky, Rev. Mod. Phys. v. 10, pp. 264-269
(1978).

R.H. Jansen, IEEE Trans. MTT v. 26, pp. 75-82
(1978).

E.I.Nefedov and A.T. Fialkovskii, Sov. Phys.
Doklady v. 22, pp. 448-450 (1977).

J
!, koa

Ge(y-y’)pl(y’)dy’= — rVo+Acosh CX2.-1koy

-9. 2no(a2-1 ) (16)

573



z

Fig. 1 Open microstrip
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Fig. 2 (a) Symmetric stripline
(b) Parallel-plate line
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Fig.4 Effective dielectric constant Cr
-2=0.

eff
for o~en microstri~; t=0.64 mm, 1=1.5 mm,

= 9.9 as computed by Jansen,
‘r and by the present method

Fig. 5 Branch cuts in ~plane
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